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Abstract— The frequency of coughing is commonly
used as the primary measure of effectiveness in clinical
trials of treatments for chronic coughing. Noninvasive,
real time cough counting directly on a wearable, em-
bedded device is a fitting solution. This paper explores
Edge-AI to implement deep learning architectures based
on CNNs for cough classification while considering
limited memory for inference. It additionally analyses the
importance of input signals and preprocessing methods
on the classification performance of cough detection. The
CNN models conceived are able to classify coughs with a
similar performance as large models but with less than
16,000 parameters when the input signals, preprocessing
techniques and window length are correctly chosen.

I. INTRODUCTION

In this report we present lightweight deep neural
network (NN) architectures for cough detection. Their
small number of parameters (<16,000) allow them to
fit on the small, embedded devices created by the
Embedded Systems Lab (ESL) at EPFL. These devices
are worn on the chest and must perform real-time and
low-power monitoring.

Cough detection is a critical step to measuring
cough frequency, which can be used as a marker to
monitor the severity of respiratory conditions. [1] A
cost-effective, non-invasive method for continuously
monitoring the cough patterns of patients is needed
to provide individualized care. Coughs should be
detected in real-time, energy-efficient, and privacy-
preserving manner.

With this in mind, the Embedded Systems Labo-
ratory (ESL) of EPFL has been developing a device
that can be worn on the chest and records audio and
movement data. The data is processed "at the edge"
which means on the device itself. Coughing can be
detected through the sound and chest movement it
produces, but it can be difficult to distinguish a cough
from other similar sounds or movements, such as
laughter.

In order to adapt to the RAM constraints, ESL
requires that the neural network contains less than
16,000 parameters. Parameter-heavy networks con-
sume greater power during inference unlike smaller
networks. It is crucial to determine the best architec-
ture and preprocessing approach so that the neural

*This work was performed in collaboration with the Embedded
Systems Laboratory of EPFL which also provided the used data.

network is efficient in extracting features from the
input signals. Our tasks were to first determine which
data preprocessing to use, then to determine which
signals were the most impactful, and finally perform
window length optimization. We also explored the
impact of downsampling the audio data. We present
architectures, all based on convolutional neural net-
works (CNNs), for three types of inputs: 2-microphone
audio, inertial measurement unit (IMU), and combined
audio-IMU.

II. METHODS

A. Data set description

The cough detection data set provided by the ESL
consists of 16 subjects. Each subject produced forced
cough sounds and 4 “parasitic sounds”: speech, deep
breathing, laugh, and throat clearing. These four par-
asitic sounds have similar audio and chest movements
to coughing. The data is recorded under four different
background scenarios and two kinematic scenarios.
The background noise scenarios are no noise, traffic,
another person coughing in the background, and loud
drum music. The kinematic scenarios are sitting and
walking. The 16 subjects produced 21,590 total sam-
ples, of which around 20% are coughs. All subjects
except one produced between 150 and 450 cough
samples. For each cough there are two input devices:
audio input and IMU input. For audio input two
microphones were placed, one facing outward and the
other facing inward (towards chest), both sampled at
16 kHz. The IMU input consists of six channels: X, Y,
Z accelerometer and Y, P, R gyroscope measurements
sampled much slower at 100 Hz due to the different
nature of IMU signals.

B. Data augmentation

Deep neural networks require a large training
dataset to achieve satisfying performance. As there are
only 16 subjects, ESL applied data augmentation of
the raw biosignals. The data augmentation technique
used is to time shift the raw signals to the left or right
by a random amount. The number of times this is done
is determined by an augmentation factor. We chose 2
as the augmentation factor meaning the time shift was
done twice for each biosignal sample.
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C. Data prepossessing

Deep learning models have to be effective for clas-
sifying audio samples, even with a high noise, making
interesting to explore for a cough detection device. [2]
The microphone measures the amplitude of sound at
fixed time intervals. This is the raw audio data that can
be fed into a neural network and trained. Transforming
audio signals into images and then using the same
networks that are effective in image classification yield
excellent results in the audio domain. [3]

Fourier transforms only give you a spectrum of
frequencies, to data on time. This is why Short-
Time Fourier Transforms (STFT) and Mel-frequency
cepstrum (MFCC) are popular for audio classification.
These two transformations work by taking smaller
windows and calculating the Fourier transform on each
of these small windows to obtain their frequency spec-
trum. When combining all these Fourier transforms, a
spectrogram is obtained as shown in Figure 2. The
difference between STFT and MFCC is that MFCC
uses the Mel Scale instead of the frequency scale and
uses the decibel Scale instead of amplitude. The Mel
scale is a scale of pitches that mimics the way humans
perceive sound using a logarithmic scale and therefore
contrast is greater than with STFT.

The choice for the window length of the STFT and
MFCC is important as the sampling frequency is fixed
by the microphone (16kHz) [4]. Due to the uncertainty
principle [5], the choice of the window size is a trade-
off between frequency resolution and time resolution.
Increasing the window size increases the resolution
in the frequency domain, but decreases it in the time
domain. After trying multiple values and seeing which
gave the most distinct spectrograms, N=256 was cho-
sen as the window size. The uncertainty principle can
be partly counteracted by taking windows that overlap
each other, separated by H samples. The hop length
H=N/2 is chosen as a good trade off between the
increase in time resolution it provides and the increase
in data volume it causes which is especially important
to consider for Edge applications. Applying STFT or
MFCC on our data with these N and H as parameters
gives an image of size 129x88 (or 128x88 for MFCC)
for each audio channel. If both the inner and outer
microphones are used, the spectrograms at the input
of the CNN are 2x129x88. These sizes are considering
the 0.7 second overall window. For the IMU data, the
global training set mean and standard deviations in all
six channels were computed, then used to normalize

Fig. 1. Audio data from outer microphone of a cough sampled at
16kHz with a window of 0.7 seconds

Fig. 2. MFCC and STFT of the cough audio sample shown in
Figure 8 with N = 256 and H = N/2

the input for train and validation set. For the audio data
we chose not to normalize it as audio data is much
more dependant on exterior environment factors such
as the room, the pressure, temperature and background
sound levels. As the dataset we are given was collected
in a set environment, for generalization purposes it was
better to have the model learn on non-normalized data.

D. Training and validation

A criteria was that all samples from one subject
must be used exclusively in the training or validation
dataset but must not be in both. To classify correctly
on novel subjects, a model must be able to accurately
predict the output for new data based on the patterns
and relationships it has learned from the training data.
If a model overfits the training data, it may perform
poorly on novel subjects due to it learning patterns
that are specific to the training data set which may
not generalize to new subjects. On the other hand,
if a model underfits to the training data, it may also
perform poorly on novel subjects because it has not
learned enough about the underlying patterns and
relationships in the data. Therefore, it is important to
strike a balance between overfitting and underfitting
in order to build a model that can classify correctly
on novel subjects.

The subjects are split a 80-20 training-validation
split. Two different training-validation splits are done
for each test of a model architecture to compute the av-
erage performance reducing variances that arise from



the distribution of training/validation subjects. All
tested models/architectures were trained with cross-
entropy loss, using the Adam optimizer with a learning
rate of 0.001 for 20 epochs, apart from IMU models
which would underfit at 20 epochs, so we used 30
epochs. The chosen batch size was 32. Since coughs
only composed 20 percent of the dataset, area-under-
curve (AUC) score was preferred to raw accuracy
during evaluation.

For the IMU data and raw audio data, 1D convolu-
tional kernels of size 5 was used. For both MFCC and
STFT, 2D convolutions with 5x5 kernels were used to
capture patterns not only across time but also between
frequency bands. Stride of 2 was used to decrease
nummber of parameters.

III. RESULTS

Unless specified, a window length of 0.7 seconds
and a sampling frequency of 16kHz was used.

A. Audio preprocessing

TABLE I
AUDIO TRANSFORMATION IMPACT ANALYSIS

Transformation Parameter Size AUC
Raw 15254 90.84%

STFT 15926 96.31%
MFCC 15926 97.32%

For models with only audio data as input, perfor-
mance decreased in this order: MFCC, STFT and then
raw audio data as can be seen in table I. The slightly
better MFCC results are due to Mel spectrograms
having more contrast and a cleaner, more distinct
spectrogram than with STFT due to the logarithmic
nature of the decibel scale. Meanwhile, raw audio data
models using 1D convolutions performed on average
around 6% worse than STFT and MFCC model which
is expected due to the larger difficulty a CNN model
has to extract features from time-series data.

B. Determining impactful signals

We can see from table II that the inner microphone
is not as impactful as the outer, but still provides
useful information as the model with both mics still
outperforms the model with just the outer mic.

The resulting AUC when any IMU signal was
turned off was higher than with all IMU signals active
(see Figure 3), therefore the model was overfitting.

TABLE II
MICROPHONE IMPACT ANALYSIS

Used Microphone(s) Parameter Size AUC
Inner mic 15726 95.615%
Outer mic 15726 96.77%
Both mics 15926 97.32%

Fig. 3. Impact of turning off IMU signals on AUC

Many combinations of turned off signals were pos-
sible with the combined model. The inner micro-
phone was less impactful, and x-accelerometer and p-
gyroscope were the least impactful signals from the
IMU. Leaving these 3 signals out of the input data for
the combined model therefore gave us the best AUC
score, better than without excluding these signals and
nearly matching the audio model scores (see table III).

TABLE III
COMBINED SIGNAL IMPACT ANALYSIS

Audio Signals IMU Signals Parameters AUC
Inner mic accel and gyro 15747 93.87%
Outer mic accel and gyro 15757 96.73%
Outer mic accel y,z and gyro r,y 15667 96.90%
Outer mic accel z and gyro r 15587 96.18%

All All 15947 96.88%

C. Window length optimization

Fig. 4. Graphs showing how AUC (left) and number of parameters
(right) change with window lengths

The main segment of a cough lasts on average 0.32
seconds. There are distinct sounds and chest move-
ments that occur before and after a cough that could be



useful features for the models. Window length must be
long but not too long such that the detection becomes
delayed and impacts the real-time detection. A short
window length means fewer parameters as smaller
input size. The best performing models previously
found (MFCC with both audio channels and the com-
bined model with outer microphone, accelerometer y,z
and gyroscope r,y as input signals) were tested. For
window lengths of 0.6 and 0.8, only the number of
input channels of the first fully connected layer had
to be changed. But as window length decreased below
that, the kernel sizes had to be changed from 5 to 3
due to the input data not being big enough.

As shown in Figure 4, the performance of the
MFCC model decreases slowly as the window length
becomes shorter than 0.6s. The performance of the
combined model drops more sharply. The IMU CNN
may not be able to effectively learn the difference
between a cough and a laugh for example due to the
samples being cut. The best AUC was achieved with a
window length of 0.6 seconds for both models. Due to
maxpooling, stride and the kernel sizes chosen for the
convolutional layers of the MFCC model, the number
of parameters for a window length of 0.6s is the same
as for a 0.7s window. Looking at the graph on the right
of Figure 4, we observe a linear relationship between
the number of parameters as a result of the different
window lengths.

D. Down sampling

Fig. 5. Graphs showing how AUC (left) and number of parameters
(right) change with different sampling frequencies for audio data

A cough’s audio frequency spectrum is generally
lower than the audible spectrum of 20kHz. This is why
the ESL chose 16kHz for the sampling frequency as
high pitched sounds are not necessary for cough clas-
sification. When the sampling frequency is decreased
the size of input data decreases, and therefore the
number of parameters decreases as well. When we
downsample to lower than 14kHz, the kernel sizes
of the convolutions for the audio CNN needs to be

decreased to 3. Figure 5 shows that decreasing the
sampling frequency causes an almost linear decrease
in AUC up to 8kHz. Below 8kHz was not tested due
to generability concerns. Indeed, even if AUC would
continue to decrease linearly, models built with a
sampling frequency below 8kHz would not generalize
well to subjects with higher pitched coughs.

IV. DISCUSSION AND CONCLUSION

The goal of this project was to implement a deep
learning model capable of effectively detecting coughs
against similar perturbations while maintaining the
number of parameters underneath 16,000 for imple-
mentation on low-power embedded devices. An anal-
ysis on raw audio data against MFCC and STFT was
done, which gave us the overall best model for a 0.7s
window: using MFCC on both audio signals (AUC of
97.32% achieved). We then studied models using only
IMU data and another combining audio data with the
IMU signals. IMU signals on their own achieved AUC
scores of 5% less than audio models, but the combined
model with STFT only had a 1% difference to the best
MFCC model.

Signal importance showed having both microphones
for audio models was best. For the combined model it
was best if only the most impactful signals were kept
as the AUC increased and the number of parameters
decreased slightly. The analysis of window length and
downsampling was done to explore ways to reduce the
parameters. We found that a 0.6s window increased
the performance of the MFCC model with both mi-
crophones to 97.44% AUC with 15926 parameters.
The best combined model was also improved with a
0.6s window and achieved 97.28% AUC with 14443
parameters. These results were obtained from 16kHz
sampling. Our downsampling study showed a trade-
off that can be made between number of parameters
and AUC using downsampling.

RNNs based on LSTMs were considered but dis-
favored due to high latency and parameter heaviness
rendering them unsuitable for real-time cough detec-
tion, and also CNN were providing excellent results.
Directed, forced coughs were used in the dataset
as natural coughs are more difficult to source, but
this raises the concern for generability of the models
trained on such a dataset, as natural coughs may be
less predictable. A future improvement would be to
pre-train the models using the COUGHVID dataset
[6]. Validation will be done on unseen data by ESL.
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V. APPENDIX

Fig. 6. Architecture of best classifier (MFCC) for audio

Fig. 7. Architecture of best classifier only considering IMU

Fig. 8. Architecture of best classifier considering audio and IMU


