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ABSTRACT

Background: Health care services in resource-limited settings can benefit from Clinical Decision
Support Systems (CDSS) to enhance quality of care. However, the potential of CDSS for syndromic
surveillance remains untapped, as current surveillance methods rely on untrained staff and incomplete
data. This study aims to explore the potential and limitations of clustering for syndromic surveillance,
with a specific focus on the relationship between clustering and the underlying data structure of CDSS.
Methods/Findings: The dataset consists of medical consultations conducted between December 2021
and February 2023, involving 47,886 children at 61 health facilities in Rwanda. Using demographic
and medical features, consultations are clustered and analyzed spatially and temporally to assess per-
formance and its alignment with the CDSS data structure, characterized by diagnoses and missingness.
Results indicate that tested clustering approaches do not effectively cluster diagnoses, but the presence
of missingness influences the clustering outcome if not properly addressed. Conclusion: Clustering
CDSS data can reveal patterns beyond the underlying data structure, suggesting its potential for
syndromic surveillance. Further exploration and refinement of clustering methods are necessary to
fully exploit the capabilities of CDSS in this context.

∗Citation: Author. Title. Year. MSc Semester Project Report. Intelligent Global Health, EPFL.
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1 Background

Providing healthcare services in low-resource settings poses significant challenges for clinicians due to heavy workloads
as well as limited training and support for serious cases [1]. Clinical Decision Support Systems (CDSS) have
demonstrated their potential to enhance healthcare in such contexts by assisting clinicians in making informed decisions
based on patient data [2]. In line with this objective, the DYNAMIC project of Swiss TPH developed a CDSS
collaboratively with domain experts and healthcare practitioners [3]. The primary focus of DYNAMIC is to address
the critical issue of antibiotic resistance, given that the average 5-year-old child in Africa has undergone 25 antibiotic
treatments in their lifetime [4]. However, the untapped potential of DYNAMIC remains underutilized. One notable
benefit is the system’s ability to automatically collect real-time, patient-level medical data, which brings further
opportunities to improve public healthcare in low-resource settings. Leveraging this data, one possible application is
the utilization of CDSS data for syndromic surveillance, which this study regards as doing spatio-temporal analysis of
symptoms and outbreak detection. Notably, this application offers advantages over the current standard solution for
syndromic surveillance, Integrated Disease Surveillance and Response (IDSR), which relies on untrained personnel and
incomplete data, leading to limitations [5].
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2 Aim and Objectives

The aim is to explore the potential and limitations of unsupervised learning on CDSS-derived data for syndromic
surveillance.

1. Objective 1. To preprocess DYNAMIC’s CDSS data [4.1]
2. Objective 2. To describe the data [4.2]
3. Objective 3. To explore clustering approaches and their relationship to the tree structure underlying

DYNAMIC’s CDSS [4.3]
4. Objective 4. To perform syndromic surveillance [4.4]
5. Objective 5. To build a visualisation platform to display a selection of the above results for an interdisciplinary

audience [4.5]
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3 Methods

3.1 Data

3.1.1 Context

This study utilized data obtained from consultations conducted between December 2021 and February 2023 in 61
outpatient facilities distributed throughout Rwanda. The data was collected using the tablet-based application of
DYNAMIC’s CDSS. The study included a total of 47,886 infants and children up to the age of 15 from 1,037 villages
across Rwanda. The CDSS captured a wide range of patient data, encompassing demographics, clinical signs, symptoms,
diagnoses suggested by clinicians, and CDSS-generated diagnoses. To give at least one of the 169 diagnoses considered
by the CDSS, its underlying decision tree uses the demographics: age and gender, along with 917 signs and symptoms.
Due the usage of a decision tree the CDSS data originally is stored in a tree structure but was transformed to tabular
data for this study.

3.1.2 Features

As features the demographics: age and gender as well as 37 medical signs and symptoms were chosen. The latter were
selected by the domain experts which intend to use these 37 medical features to find clusters manually with their domain
knowledge. In the future, their results can be used as an additional evaluation of this study’s clustering. The used
features are special due to their missingness and differentiating data types. The mixed typed data comes with several
implications, most notably for the model selection and preprocessing methodology. The majority of features are binary
and categorical (See Appendix A). According to domain experts all categorical features are ordinal. Missingness - as in
the amount and way features are missing values – defines the features as the majority of them consists of more than
50% of NAN values (See Fig 1). Considering that the medical features originate from a decision tree, their missingness
is not at random (MNAR) since e. g. a symptom is not being captured by the CDSS because the consulting clinician
regards that symptom to be non-existent or of low value. Consequently, medical features are missing values whenever
the underlying symptom or sign is of low value. Besides MNAR, some features are also missing at random as their
missing values can be explained by other features’ values (See Fig 2) or missingness (See Fig 3). For instance, the
missingness of PE212 - Respiratory rate (breaths/min) - 8469 highly correlates with existing values of S39 - Cough -
7817 (See Fig 2) and missing values of PE18 - Chest indrawing - 7811 (See Fig 3).

Figure 1
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Figure 2

Figure 3

3.1.3 Labels

As an unsupervised study, no labels are given. However, it is of interest to see how the found clusters overlap with
diagnoses determined by the CDSS. Doing this, potentially reveals diagnoses missed by the CDSS; in the form of a
totally new diagnosis or a subcategory of a considered diagnosis. As there are 169 possible diagnoses, this study limits
itself to the 10 most common diagnoses to develop and evaluate clustering approaches [4.3]. At least one of the 10
most common diagnoses are recognised in 69.52% of all consultations (See Fig 4).To compare the found clusters with
the selected diagnoses, one must consider that consultations can be assigned to more than one of the most common
diagnoses (See Fig 5).
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Figure 4

Figure 5

3.2 Clustering approaches

A clustering approach defines the preprocessing steps and clustering algorithm, including the setup of hyperparameters.
For the purpose of syndromic surveillance, the widely used K-Means algorithm was chosen as the baseline clustering
method in this study. However, as K-Means requires numerical values, an extension called K-Prototypes, designed
for handling mixed-typed data, was also tested [6]. Both algorithms were implemented with the number of clusters
determined by the elbow method, except during testing of various clustering approaches where 10 clusters were chosen
to represent the 10 most common diagnoses.

To optimize the performance of K-Means clustering, this study experimented with different hyperparameters, particularly
focusing on the initialisation method (K-Means++ vs. customized centroids) and the number of initialisations. Manual
initialisation with customized centroids was found to potentially enhance clustering performance, although it introduces
subjectivity [7]. In this study, clustering with a centroid for each cluster was tested to increase the likelihood of capturing
all 10 most common diagnoses as individual clusters. For this purpose, each centroid was assigned the average feature
values corresponding to the respective top 10 diagnoses.

6



Clustering CDSS data

Two preprocessing strategies were developed and implemented in this study. The first strategy aimed to include
missingness in the features, while the second strategy focused on removing missingness through domain-based
imputation. In the case of K-Prototypes, missing continuous feature values were imputed with their mean and
standardized, while missing binary and categorical values were treated as an additional category. For K-Means, which
requires all features to be numerical, the same preprocessing pipeline as K-Prototypes was applied, followed by one-hot
encoding for binary and categorical features.

To remove missingness from the features, domain-based imputation was performed, which also maintained the ordinal
scale of categorical features. In this approach, missing values were imputed with the most common state for a patient,
while preserving the ordinal information through numericalization. However, this approach resulted in the loss of
missingness information and raised concerns about the interpretation of distances between categories across features,
particularly in the context of K-Means clustering. Given the aim of this study to explore the differences between
clustering with and without missingness, examining the clustering results of all preprocessing approaches is of interest.

Table 1: Overview tested clustering approaches

Clustering approach Algorithm Preprocessing Hyperparameters

Numericalisation Missingness Scaling Number
clusters (K)

Number
initialisations

Initialisation
method

K-prototypes
preprocessed features K-Prototypes Not needed Included

as category Yes 10 100 As in
original paper

K-means with K-prototypes
preprocessed features K-Means One-hot encoding Included

as category Yes 10 100 K-Means++

K-means preprocessed
with domain knowledge K-Means based on

domain knowledge
Imputed based on

domain knowledge Yes 10 100 K-Means++

K-means with K-prototypes
preprocessed features

and manual centroid init
K-Means One-hot encoding Included

as category Yes 10 1
Centroids
based on
diagnoses

K-means preprocessed
with domain knowledge
and manual centroid init

K-Means based on
domain knowledge

Imputed with
domain knowledge Yes 10 1

Centroids
based on
diagnoses

3.3 Examining clustering’s relationship to CDSS’s tree structure

The tree structure in the given data is identifiable through diagnoses (representing the leaves) and the missingness of fea-
tures (representing the branches). Therefore, analysing the relationship of clustering to both reveals its correspondence
to the tree of the CDSS.

To investigate the relationship between clustering and diagnoses, this study employs multiple approaches. Firstly,
overlaid visualizations are utilized by superimposing diagnoses onto features after dimensionality reduction through
Uniform Manifold Approximation and Projection (UMAP) [8]. This visualization technique enables the examination of
the alignment between diagnoses and clusters. Secondly, descriptive statistics are employed to analyze the distribution
of diagnoses within each cluster. This provides insights into the correspondence between clustering results and the
prevalence of specific diagnoses. Additionally, a supervised learning approach is employed, where a diagnoses based
LightGBM (LGBM) classifier is trained to predict cluster labels. The accuracy, in the form of the cross-validated F1
score, and Shapley Additive Explanations (SHAP) values of the classifier are then utilized to assess the relevance of
diagnoses in determining cluster assignments. This study aimed to address the question of whether clusters corresponded
to specific diagnoses. If clusters did align with diagnoses, it would indicate a leaf-like structure in the clustering results.
In this case this study would further investigate whether additional leaves, such as new diagnoses or sub-diagnoses
not considered by the CDSS, were identified by the clustering. On the other hand, if clusters did not align with a
tree-like structure, the study would examine the alternative patterns uncovered by the clustering. The thus resulting
findings would be documented, and adjustments to the clustering approach or completely new approaches would be
made to iteratively approximate the desired tree structure. The objective was to identify the factors within the data that
prevented the clustering from aligning with the expected tree structure. This iterative process aimed to validate the
tree-like structure and progressively approach a more accurate representation of the underlying diagnoses.

To explore the relationship between clustering and missingness, this study conducted a comparison between clustering
approaches that incorporated missingness and those that did not. This comparison provided valuable insights into the
impact of missingness on clustering outcomes. Additionally, analyzing the distribution of missingness within each
cluster proved to be an insightful factor in understanding the clustering results. Furthermore, the same supervised
learning approach as for the relationship to diagnoses was employed to delve deeper into the relationship between
missingness and cluster labels. However, instead of using diagnoses this LGBM classifier takes the shadow matrix of
the features as input.
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3.4 Syndromic surveillance

This study specifically focuses on the spatio-temporal analysis of similar patients and outbreak detection as crucial
components of syndromic surveillance. The analysis involves exploring clusters generated through the ultimately
selected clustering approach, examining the distribution of demographics within each cluster, and tracking the number
of consultations over time and space. Outlier detection is employed to identify potential outbreaks by utilizing z-scores,
which are based on the proportion of consultations per week and village. Notably, this study concentrates solely on
detecting outliers in the upper end, as an unusually high proportion of consultations could indicate the presence of an
outbreak. Therefore, a threshold of 3 is chosen for the z-score to be classified as an outlier and thus point of interest for
domain experts.

3.5 Visualisation platform

To help clinicians and experts in public health to perform syndromic surveillance, this study created a web based
platform visualising its main results. The platform was built with Plotly Dash [9] and deployed using Heroku [10].
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4 Results

4.1 Preprocessing pipeline

The preprocessing phase of this study consists of two main steps. In the first step, efforts were made to address data
inconsistencies such as incorrect GPS coordinates of health facilities and inaccurate patient village information in the
CDSS. Fuzzy search techniques based on the Levenshtein Distance metric were applied to correct village names, and
consultations that could not be corrected were removed in consultation with domain experts. Additionally, consultations
falling outside the designated intervention period were excluded as per domain expert requirements. After completing
these steps, the study was left with 47,086 consultations, which accounts for 45.41% of the original raw data.

The second part of the preprocessing phase is specific to the chosen clustering approach [3.2]. This step aims to
optimize the clustering process and gain insights into the relationship between the resulting clusters and the decision
tree structure of the CDSS.

4.2 Description of data

4.2.1 Demographics

Figure 6
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Figure 7

4.2.2 Temporal analysis

Figure 8
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4.2.3 Spatial analysis

Figure 9

Figure 10

4.3 Clustering

4.3.1 Comparison and evaluation of clustering approaches

In summary, the evaluation of various clustering approaches in this study has revealed that none of them can be
considered optimal for the syndromic surveillance task at hand (See Appendix C). Despite this, no further optimization
was pursued, and the K-means preprocessed with domain knowledge approach emerged as the most favorable option.
This approach demonstrates a closer alignment with the desired 10 most common diagnoses, as evidenced by higher
accuracy scores in the diagnosis-based classifier evaluation (See Appendix C.6.2).

It is important to acknowledge that the selected clustering approach, similar to the others examined, is not without
limitations in producing distinct clusters, as indicated by its low silhouette score (See Appendix C.5). Furthermore,
there exists a significant disparity in the accuracy of feature contributions to the clustering compared to alternative
clustering approaches (See Appendix C).
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4.3.2 Clustering’s relationship to tree of CDSS

Diagnoses Examining the relationship between clustering and diagnoses in CDSS data reveals that none of the
clustering approaches successfully capture the diagnoses. There are potential reasons for this outcome. Firstly, the
clustering algorithms may identify diagnoses other than the 10 most common ones used in this study. Secondly, it is
possible that the medical features utilized in the study cannot effectively explain these diagnoses, even with domain
knowledge. Consulting with domain experts would be necessary to validate this assumption. Following the methodology
for investigating the clustering-diagnoses relationship, this study aimed to identify the key factors influencing the
clustering results. Analyzing the SHAP values of feature-based classifiers, it was found that numerical features (such
as age of patient and respiratory breath) dominantly influenced the result of all clustering approaches (See Appendix
C.6.1). This observation raises concerns about the scaling of features during preprocessing, indicating a potential flaw
in the process. Interestingly, manually initializing centroids, which was intended to improve the clustering performance,
resulted in poorer ability to identify diagnoses (See Appendix ??). This discrepancy may stem from the methodology
used to compute the coordinates of the centroids which lacks scientific evidence. Surprisingly, despite this drawback,
manual initialization of centroids still enhanced the overall clustering accuracy (See Appendix C.6.1), highlighting the
need for further investigation. Lastly, it appears that clustering approaches that preserve missingness in the features
encounter greater difficulty in identifying the diagnoses. This finding suggests that handling missing values presents
challenges in the clustering process. These insights provide valuable directions for future research and underscore the
complexities involved in aligning clustering outcomes with specific diagnoses.

Missingness When examining the relationship between clustering and missingness in the CDSS data, it becomes
evident that the inclusion of missingness in the clustering features influences the clustering outcomes. Missingness can
effectively explain the resulting clustering pattern across all approaches that incorporate missingness (See Appendix
C.6.3). However, this influence is more pronounced in K-Means compared to K-Prototypes (See Appendix C.6.3).
The reason behind this discrepancy could be attributed to the method used by K-Prototypes to compute distances. By
considering categorical features and treating missingness as an additional category, K-Prototypes can better account
for missing values. Furthermore, it is noteworthy that imputing missing values appears to diminish the impact of
missingness on the clustering results. These findings highlight the importance of considering missingness in clustering
analysis.

4.4 Syndromic surveillance

Running the selected clustering approach, K-means preprocessed with domain knowledge, on the complete dataset
resulted in three clusters, which were utilized for syndromic surveillance and the development of the dashboard. While
this study primarily focuses on establishing a data analysis pipeline for syndromic surveillance rather than conducting
the surveillance itself, the disparity in clustering outcomes between the entire dataset and the subset of consultations
associated with the 10 most common diagnoses is not extensively explored. Nonetheless, it remains intriguing to
investigate the factors that contribute to the variation in the number of clusters when utilizing these different subsets,
despite employing the same clustering approach in both cases.
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4.4.1 Cluster analysis

Figure 11

Figure 12
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Figure 13

4.4.2 Spatio-temporal analysis

Figure 14
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Figure 15

Spatial analysis

Figure 16

Temporal analysis

4.4.3 Outbreak detection

This study found 443 outliers. To assess the potentiality of an outbreak, further investigation with domain experts is
advised. Doing so, the provided syndromic surveillance dashboard can assist.
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Figure 17: Outliers found in the 27th week

Figure 18
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Figure 19

4.5 Visualisation platform

The syndromic surveillance dashboard contains four pages: Home, Data, Cluster analysis and Syndromic surveillance.
The user can use the dropdown menu in the top right corner to navigate between them.

4.5.1 Home

The content on this page requires adaptation to cater to the specific needs of the intended users, which is determined
by the level of accessibility. If the dashboard is exclusively utilized by domain experts, a detailed and technical
methodology description would be suitable. However, if the dashboard is public, considerations must be given to the
limited knowledge of users in machine learning and the domain.

Figure 20: View on incomplete homepage with dropdown menu for navigation through analyses

4.5.2 Data

This page informs the user about the used features and shows static visualisations about the demographics and number
of consultations over space or time (See Fig 21). For the latter, the user has the option to select the unit of time (Day,
Week, Month or Year) and can use a slider to inspect the number of consultations over time.
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Figure 21

4.5.3 Cluster analysis

With the help of this page users can explore the clustering result. They can interactively see the distribution of features,
complaints and diagnoses per cluster.

Figure 22
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Figure 23

Figure 24

4.5.4 Syndromic surveillance

This page provides users interactive visualizations to see outliers over space and time (See Fig 25) which can further be
examined through the spatio-temporal analysis of the clusters also given on this page (See Fig 27). In combination
with the cluster analysis page a holistic view about the situation can be achieved so that it can help domain experts to
perform syndromic surveillance.
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Figure 25

Figure 26
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Figure 27
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5 Discussion

5.1 Limitations

This study encounters limitations stemming from the inherent constraints of the K-Means algorithm. One limitation
is the algorithm’s tendency to create clusters of approximately equal size, which hinders the creation of clusters
that correspond to the top 10 diagnoses. These diagnoses would naturally result in clusters of varying sizes due to
the differing number of consultations per diagnosis (See Fig 4). Additionally, K-Means is unable to assign a single
consultation to multiple clusters, while clustering consultations for the top 10 diagnoses would require consultations
to belong to more than one diagnosis cluster, considering that consultations can have multiple diagnoses (See Fig 5).
Another limitation of this study originates from the fixed feature selection mandated by the domain experts. It forced
using features with too many missing values (See Appendix C.5.3) and low variance (See Appendix C.5.3), which hold
no information and thus do not bring any merit for the clustering regardless of the chosen algorithm. If the domain
experts were to reconsider this constraint, a more comprehensive feature selection approach could potentially enhance
the quality of clustering results. Various methods exist for selecting features in mixed-type data [11]. One simple way
is to select features explaining the desired top 10 diagnoses best through supervised learning methods. Alternatively, in
collaboration with domain experts and based on the results of this study, features can be selected using the insights
gained from SHAP values and feature distributions.

5.2 Future work

5.2.1 Fix remaining errors

Despite extensive preprocessing, several errors in the data persist. Addressing these errors should be prioritized as the
initial action for any feature work. One error lies in the feature capturing the age of patients, which has been identified
as incorrect. This represents a significant error, as the SHAP values obtained from the feature-based classifier clearly
indicate the importance of age as a feature for multiple clustering approaches. (See Appendix C.6.1). This issue was
recognized by domain experts too late to be rectified for this study. Another issue involves incorrect GPS coordinates
for 77 villages. Due to the nature of the error originating from the data itself and the relatively low number of villages
affected out of the total 1037, a decision was made not to correct these coordinates at present.

5.2.2 Adjust methodology

To enhance the methodology of this study, several improvements can be considered.

Firstly, optimizing the chosen dimensionality reduction technique, UMAP, or exploring alternative methods can improve
the quality of the reduced feature space and thus the visualization of clustering results. Principal Component Analysis
(PCA) and Factor Analysis of Mixed Data (FAMD) [12], which were tested as alternatives, did not yield distinct
clusters, potentially due to the data’s failure to meet the linear dependency requirement of PCA [13]. On the other hand,
t-distributed Stochastic Neighbor Embedding (t-SNE) and UMAP showed promising results, with UMAP ultimately
being chosen for its visually separable clusters as well as higher and thus better silhouette score [14].

Secondly, improvements can be made to the diagnoses-based centroid initialization for K-Means, as the current approach
was performed hastily. Investigating how this initialization method can potentially enhance clustering performance, as
measured through supervised learning, would provide valuable insights.

Thirdly, examining the overall impact of the tested feature preprocessing techniques on LGBM classifier used to evaluate
clustering would further strengthen the methodology. Understanding how these preprocessing methods influence the
classifier’s performance can contribute to a more comprehensive analysis of the clustering results.

Fourthly, it is recommended to explore additional clustering approaches, taking into account the trade-off between
maintaining the ordinal scale of categorical features and preserving missingness involved in preprocessing the CDSS
data. One potential solution is to numerically represent missing values based on domain knowledge, while also including
a binary indicator variable for each feature to preserve missingness information. This approach may lead to an optimal
clustering result with K-Means.

Lastly, considering the results of manual clustering performed by domain experts parallel to this study can serve as an
additional evaluation metric for any clustering outcome. However, due to time constraints, collaboration on this matter
with the other study was not feasible.
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5.2.3 Potential follow-up projects

This study laid the ground work for several follow-up projects which would profit from the implemented preprocessing
pipeline and the insights gained on how the tested clustering approaches relate to diagnoses and missingness in the
CDSS data.

DYNAMIC’s CDSS data from Tanzania It would be of interest to extend the analysis by applying the same
clustering approaches to the CDSS data from Tanzania, where DYNAMIC is also utilized. Comparing the clustering
results from Tanzania with those obtained in this study would provide valuable insights and contribute to a broader
understanding of the clustering performance across different settings.

Cluster representations of patients The iGH group has developed Modular Clinical Decision Support Networks
[15], which dynamically update the patient state as new information becomes available. It would be of great interest
to investigate the relationship between clustering the patient representations generated by these networks and the
underlying decision tree structure of the CDSS.

Clustering for outbreak detection Due to this study’s given resources the primary focus of this study was not
on outbreak detection despite its necessity for syndromic surveillance. However, since this study demonstrated that
clustering the data from DYNAMIC’s CDSS reveals more than just the underlying tree structure, it also legitimised
pursuing a follow-up project solely dedicated to outbreak detection. This study recommends exploring proven clustering
approaches designed specifically for this purpose (For review, see [16]). Anomaly detection techniques can also be
considered for outbreak detection, especially if based on FAMD [17] since this study tested and implemented FAMD
for dimensionality reduction. Exploiting the given data owned by the iGH group, the host of this study, remote sensing
satellite data can be additionally used for outbreak detection due to its potential to uncover risk areas for epidemic
diseases by establishing connections between the environment, climate, and health [18].

5.3 Conclusion

In conclusion, this exploratory study highlights the important finding that clustering CDSS data does not necessarily
align with the underlying decision tree. Therefore, the utilization of CDSS data for clustering purposes can lead to
new insights. The presence of structural missingness within the CDSS data does impact the clustering results, but this
influence can be mitigated through the application of imputation techniques guided by domain knowledge.

By implementing a comprehensive pipeline and developing a syndromic surveillance dashboard, this study facilitates
the seamless continuation of the project’s objective to explore the potential and limitations of CDSS data for clustering.
The dashboard serves as a valuable tool for domain experts to explore the data and provide suggestions for further
improvements. For instance, domain experts can propose new features that can be readily integrated into the existing
data pipeline.

With an open-ended nature, this study sets the stage for future investigations into enhancing the clustering of CDSS
data. Continued exploration of the data, along with expert insights and the suggested refinements, will contribute to
further advancements in utilizing CDSS data for syndromic surveillance.
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Appendix

A Summary of features

Feature Type Count Share missing values in % Mean Std Min 25% quantile Median 75% quantile Max

patient_age continues 47806.0 0.0 3.3 3.5 0.0 0.0 2.0 5.0 15.0
patient_gender binary 47806.0 0.0 0.5 0.5 0.0 0.0 1.0 1.0 1.0
PE212 - Respiratory rate (breaths/min) - 8469 continues 16888.0 64.7 34.8 10.9 5.0 28.0 35.0 40.0 144.0
S39 - Cough - 7817 binary 32003.0 33.1 0.6 0.5 0.0 0.0 1.0 1.0 1.0
PE18 - Chest indrawing - 7811 binary 17436.0 63.5 0.0 0.1 0.0 0.0 0.0 0.0 1.0
S180 - How is the infant feeding currently? - 7516 categorical 1401.0 97.1 0.1 0.3 0.0 0.0 0.0 0.0 2.0
S46 - Convulsions in present illness - 8355 binary 32891.0 31.2 0.0 0.0 0.0 0.0 0.0 0.0 1.0
BC - Axillary temperature - 7823 categorical binary 35027.0 26.7 0.2 0.4 0.0 0.0 0.0 0.0 1.0
PE125 - Observation of movement - 8388 categorical 1396.0 97.1 0.0 0.2 0.0 0.0 0.0 0.0 2.0
S96 - Unable to drink or breastfeed - 7871 binary 31510.0 34.1 0.0 0.1 0.0 0.0 0.0 0.0 1.0
S157 - Vomiting everything - 8026 binary 31511.0 34.1 0.0 0.1 0.0 0.0 0.0 0.0 1.0
OS9 - Unconscious or Lethargic (Unusually sleep... binary 31511.0 34.1 0.0 0.0 0.0 0.0 0.0 0.0 1.0
PE63 - Stiff neck - 8391 binary 7766.0 83.8 0.0 0.0 0.0 0.0 0.0 0.0 1.0
PE19 - Stridor in calm child - 7812 binary 990.0 97.9 0.1 0.3 0.0 0.0 0.0 0.0 1.0
S42 - Duration of fever (days) - 7819 categorical categorical 12589.0 73.7 0.1 0.4 0.0 0.0 0.0 0.0 3.0
S124 - Significant weight loss - 7539 binary 8957.0 81.3 0.0 0.1 0.0 0.0 0.0 0.0 1.0
S118 - Significant hemoptysis (>1 episode) - 7941 binary 1075.0 97.8 0.0 0.1 0.0 0.0 0.0 0.0 1.0
S176 - Cough duration (days) - 7731 categorical binary 17201.0 64.0 0.0 0.1 0.0 0.0 0.0 0.0 1.0
E46 - Recent close contact with somebody with T... binary 28724.0 39.9 0.0 0.0 0.0 0.0 0.0 0.0 1.0
PE220 - Identifiable source of fever? - 8399 binary 1610.0 96.6 0.1 0.3 0.0 0.0 0.0 0.0 1.0
A55 - Urinary dipstick - 7648 binary 882.0 98.2 0.4 0.5 0.0 0.0 0.0 1.0 1.0
PE134 - Measles rash and associated signs - 8386 binary 1879.0 96.1 0.1 0.2 0.0 0.0 0.0 0.0 1.0
PE109 - Scarlet fever rash - 8344 binary 1426.0 97.0 0.1 0.2 0.0 0.0 0.0 0.0 1.0
PE106 - Non specific viral rash - 7930 binary 1743.0 96.3 0.3 0.4 0.0 0.0 0.0 1.0 1.0
PE218 - Unexplained bleeding - 8107 binary 780.0 98.4 0.0 0.1 0.0 0.0 0.0 0.0 1.0
S153 - Diarrhea (stools are looser or more wate... binary 1401.0 97.1 0.1 0.2 0.0 0.0 0.0 0.0 1.0
S98 - Number of loose or liquid stools over the... categorical 4050.0 91.5 1.2 1.2 0.0 0.0 1.0 2.0 4.0
S149 - Yellow appearing skin or eyes (jaundice)... binary 1401.0 97.1 0.0 0.1 0.0 0.0 0.0 0.0 1.0
PE191 - Jaundice - 8036 binary 31466.0 34.2 0.0 0.1 0.0 0.0 0.0 0.0 1.0
S74 - Abnormal vaginal discharge - 8377 binary 240.0 99.5 0.4 0.5 0.0 0.0 0.0 1.0 1.0
S81 - Urethral discharge - 7810 binary 8.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
S79 - Genital lesion - 7867 binary 29.0 99.9 0.2 0.4 0.0 0.0 0.0 0.0 1.0
BC7 - Weight for age (z-score) - 8434 categorical categorical 32958.0 31.1 0.1 0.4 0.0 0.0 0.0 0.0 2.0
BC95 - Weight for height - 7451 categorical categorical 31563.0 34.0 0.1 0.5 0.0 0.0 0.0 0.0 2.0
BC61 - MUAC for age z-score - 7839 categorical categorical 31371.0 34.4 0.2 0.5 0.0 0.0 0.0 0.0 2.0
malaria binary 12219.0 74.4 0.0 0.2 0.0 0.0 0.0 0.0 1.0
fever without source: presumed bacterial infection binary 47806.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 1.0
fever without source: presumed viral illness binary 47806.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 1.0
suspicion of tuberculosis binary 47806.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0 1.0
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